翻訳と辞書
Words near each other
・ List of A2 roads
・ List of A20 roads
・ List of A21 roads
・ List of A22 roads
・ List of A23 roads
・ List of A24 roads
・ List of A25 roads
・ List of A26 roads
・ List of A3 roads
・ List of A4 polytopes
・ List of A4 roads
・ List of A5 polytopes
・ List of A5 roads
・ List of A6 polytopes
・ List of A6 roads
List of A7 polytopes
・ List of A7 roads
・ List of A8 polytopes
・ List of A8 roads
・ List of A9 roads
・ List of AAA World Cruiserweight Champions
・ List of AAA World Mini-Estrella Champions
・ List of Aaagh! It's the Mr. Hell Show episodes
・ List of Aaahh!!! Real Monsters episodes
・ List of AACSB-accredited schools (accounting)
・ List of Aalto University people
・ List of Aare bridges in Bern
・ List of Aaron Stone episodes
・ List of AASHTO standards
・ List of ab anbars of Qazvin


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

List of A7 polytopes : ウィキペディア英語版
List of A7 polytopes

In 7-dimensional geometry, there are 71 uniform polytopes with A7 symmetry. There is one self-dual regular form, the 7-simplex with 8 vertices.
Each can be visualized as symmetric orthographic projections in Coxeter planes of the A7 Coxeter group, and other subgroups.
== Graphs ==

Symmetric orthographic projections of these 135 polytopes can be made in the A7, A6, A5, A4, A3, A2 Coxeter planes. Ak has ''()'' symmetry. For even ''k'' and symmetrically ringed-diagrams, symmetry doubles to ''()''.
These 63 polytopes are each shown in these 6 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.

Rectified 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!3
|
t2
Birectified 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!4
|
t3
Trirectified 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!5
|
t0,1
Truncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!6
|
t0,2
Cantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!7
|
t1,2
Bitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!8
|
t0,3
Runcinated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!9
|
t1,3
Bicantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!10
|
t2,3
Tritruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!11
|
t0,4
Stericated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!12
|
t1,4
Biruncinated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!13
|
t2,4
Tricantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!14
|
t0,5
Pentellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!15
|
t1,5
Bistericated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!16
|
t0,6
Hexicated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!17
|
t0,1,2
Cantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!18
|
t0,1,3
Runcitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!19
|
t0,2,3
Runcicantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!20
|
t1,2,3
Bicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!21
|
t0,1,4
Steritruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!22
|
t0,2,4
Stericantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!23
|
t1,2,4
Biruncitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!24
|
t0,3,4
Steriruncinated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!25
|
t1,3,4
Biruncicantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!26
|
t2,3,4
Tricantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!27
|
t0,1,5
Pentitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!28
|
t0,2,5
Penticantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!29
|
t1,2,5
Bisteritruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!30
|
t0,3,5
Pentiruncinated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!31
|
t1,3,5
Bistericantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!32
|
t0,4,5
Pentistericated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!33
|
t0,1,6
Hexitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!34
|
t0,2,6
Hexicantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!35
|
t0,3,6
Hexiruncinated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!36
|
t0,1,2,3
Runcicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!37
|
t0,1,2,4
Stericantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!38
|
t0,1,3,4
Steriruncitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!39
|
t0,2,3,4
Steriruncicantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!40
|
t1,2,3,4
Biruncicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!41
|
t0,1,2,5
Penticantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!42
|
t0,1,3,5
Pentiruncitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!43
|
t0,2,3,5
Pentiruncicantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!44
|
t1,2,3,5
Bistericantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!45
|
t0,1,4,5
Pentisteritruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!46
|
t0,2,4,5
Pentistericantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!47
|
t1,2,4,5
Bisteriruncitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!48
|
t0,3,4,5
Pentisteriruncinated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!49
|
t0,1,2,6
Hexicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!50
|
t0,1,3,6
Hexiruncitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!51
|
t0,2,3,6
Hexiruncicantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!52
|
t0,1,4,6
Hexisteritruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!53
|
t0,2,4,6
Hexistericantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!54
|
t0,1,5,6
Hexipentitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!55
|
t0,1,2,3,4
Steriruncicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!56
|
t0,1,2,3,5
Pentiruncicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!57
|
t0,1,2,4,5
Pentistericantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!58
|
t0,1,3,4,5
Pentisteriruncitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!59
|
t0,2,3,4,5
Pentisteriruncicantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!60
|
t1,2,3,4,5
Bisteriruncicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!61
|
t0,1,2,3,6
Hexiruncicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!62
|
t0,1,2,4,6
Hexistericantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!63
|
t0,1,3,4,6
Hexisteriruncitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!64
|
t0,2,3,4,6
Hexisteriruncicantellated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!65
|
t0,1,2,5,6
Hexipenticantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!66
|
t0,1,3,5,6
Hexipentiruncitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!67
|
t0,1,2,3,4,5
Pentisteriruncicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!68
|
t0,1,2,3,4,6
Hexisteriruncicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center;"
!69
|
t0,1,2,3,5,6
Hexipentiruncicantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!70
|
t0,1,2,4,5,6
Hexipentistericantitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|- style="text-align:center; background:#e0f0e0;"
!71
|
t0,1,2,3,4,5,6
Omnitruncated 7-simplex
|80px
|80px
|80px
|80px
|80px
|80px
|}

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「List of A7 polytopes」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.