翻訳と辞書 |
List of A7 polytopes : ウィキペディア英語版 | List of A7 polytopes
In 7-dimensional geometry, there are 71 uniform polytopes with A7 symmetry. There is one self-dual regular form, the 7-simplex with 8 vertices. Each can be visualized as symmetric orthographic projections in Coxeter planes of the A7 Coxeter group, and other subgroups. == Graphs ==
Symmetric orthographic projections of these 135 polytopes can be made in the A7, A6, A5, A4, A3, A2 Coxeter planes. Ak has ''()'' symmetry. For even ''k'' and symmetrically ringed-diagrams, symmetry doubles to ''()''. These 63 polytopes are each shown in these 6 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.
Rectified 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !3 | t2 Birectified 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !4 | t3 Trirectified 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !5 | t0,1 Truncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !6 | t0,2 Cantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !7 | t1,2 Bitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !8 | t0,3 Runcinated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !9 | t1,3 Bicantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !10 | t2,3 Tritruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !11 | t0,4 Stericated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !12 | t1,4 Biruncinated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !13 | t2,4 Tricantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !14 | t0,5 Pentellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !15 | t1,5 Bistericated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !16 | t0,6 Hexicated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !17 | t0,1,2 Cantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !18 | t0,1,3 Runcitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !19 | t0,2,3 Runcicantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !20 | t1,2,3 Bicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !21 | t0,1,4 Steritruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !22 | t0,2,4 Stericantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !23 | t1,2,4 Biruncitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !24 | t0,3,4 Steriruncinated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !25 | t1,3,4 Biruncicantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !26 | t2,3,4 Tricantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !27 | t0,1,5 Pentitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !28 | t0,2,5 Penticantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !29 | t1,2,5 Bisteritruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !30 | t0,3,5 Pentiruncinated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !31 | t1,3,5 Bistericantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !32 | t0,4,5 Pentistericated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !33 | t0,1,6 Hexitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !34 | t0,2,6 Hexicantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !35 | t0,3,6 Hexiruncinated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !36 | t0,1,2,3 Runcicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !37 | t0,1,2,4 Stericantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !38 | t0,1,3,4 Steriruncitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !39 | t0,2,3,4 Steriruncicantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !40 | t1,2,3,4 Biruncicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !41 | t0,1,2,5 Penticantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !42 | t0,1,3,5 Pentiruncitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !43 | t0,2,3,5 Pentiruncicantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !44 | t1,2,3,5 Bistericantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !45 | t0,1,4,5 Pentisteritruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !46 | t0,2,4,5 Pentistericantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !47 | t1,2,4,5 Bisteriruncitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !48 | t0,3,4,5 Pentisteriruncinated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !49 | t0,1,2,6 Hexicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !50 | t0,1,3,6 Hexiruncitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !51 | t0,2,3,6 Hexiruncicantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !52 | t0,1,4,6 Hexisteritruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !53 | t0,2,4,6 Hexistericantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !54 | t0,1,5,6 Hexipentitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !55 | t0,1,2,3,4 Steriruncicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !56 | t0,1,2,3,5 Pentiruncicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !57 | t0,1,2,4,5 Pentistericantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !58 | t0,1,3,4,5 Pentisteriruncitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !59 | t0,2,3,4,5 Pentisteriruncicantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !60 | t1,2,3,4,5 Bisteriruncicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !61 | t0,1,2,3,6 Hexiruncicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !62 | t0,1,2,4,6 Hexistericantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !63 | t0,1,3,4,6 Hexisteriruncitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !64 | t0,2,3,4,6 Hexisteriruncicantellated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !65 | t0,1,2,5,6 Hexipenticantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !66 | t0,1,3,5,6 Hexipentiruncitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !67 | t0,1,2,3,4,5 Pentisteriruncicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !68 | t0,1,2,3,4,6 Hexisteriruncicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center;" !69 | t0,1,2,3,5,6 Hexipentiruncicantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !70 | t0,1,2,4,5,6 Hexipentistericantitruncated 7-simplex |80px |80px |80px |80px |80px |80px |- style="text-align:center; background:#e0f0e0;" !71 | t0,1,2,3,4,5,6 Omnitruncated 7-simplex |80px |80px |80px |80px |80px |80px |}
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「List of A7 polytopes」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|